
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
THESIS 

 

Approved for public release; distribution is unlimited 

COMPARISONS OF ATTACKS ON HONEYPOTS WITH 
THOSE ON REAL NETWORKS 

 
by 
 

Binh T. Duong 
 

March 2006 
 

 Thesis Advisor:   Neil C. Rowe 
 Second Reader: J.D. Fulp 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
March 2006 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:  Comparisons of Attacks on Honeypots with Those on 
Real Networks 

6. AUTHOR(S)  Binh T. Duong 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
          Honeypots are computer systems deliberately designed to be attack targets, mainly to learn about cyber-attacks and 
attacker behavior. When implemented as part of a security posture, honeypots also protect real networks by acting as a decoy, 
deliberately confusing potential attackers as to the real data.  The objective of this research is to compare attack patterns against 
a honeypot to those against a real network, the network of the Naval Postgraduate School.  Collection of suspicious-event data 
required the implementation and setup of a honeypot, in addition to the installation and use of an intrusion-detection system. A 
statistical analysis was conducted across suspicious-event data recorded from a honeypot and from a real network.  Metrics 
used in our study were applied to the alerts generated from Snort 2.4.3, an open-source intrusion detection system. Results 
showed differences between the honeypot and the real network data which need further experiments to understand.  Both the 
honeypot and the real network data showed much variability at the start of the experiment period and then a decrease in the 
number of alerts in the later period of the experiment.  We conclude that after the initial probing and reconnaissance is 
complete, the vulnerabilities of the network are learned and therefore fewer alerts occur; but more specific signatures are then 
aimed at exploiting the network.   

15. NUMBER OF 
PAGES  

73 

14. SUBJECT TERMS  Honeypots, Intrusion Detection System, Deception, Cyber Attack Patterns 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

COMPARISONS OF ATTACKS ON HONEYPOTS  
WITH THOSE ON REAL NETWORKS 

 
Binh T. Duong 

Civilian, Naval Postgraduate School 
B.S., Cal State University, Long Beach, 2001 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
March 2006 

 
 
 

Author:  Binh T. Duong 
 

 
Approved by:  Neil C. Rowe, Ph.D. 

Thesis Advisor 
 
 

J.D. Fulp 
Second Reader 

 
 

Peter J. Denning, Ph.D. 
Chairman, Department of Computer Science 
 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

Honeypots are computer systems deliberately designed to be attack targets, 

mainly to learn about cyber-attacks and attacker behavior. When implemented as part of a 

security posture, honeypots also protect real networks by acting as a decoy, deliberately 

confusing potential attackers as to the real data.  The objective of this research is to 

compare attack patterns against a honeypot to those against a real network, the network 

of the Naval Postgraduate School.  Collection of suspicious-event data required the 

implementation and setup of a honeypot, in addition to the installation and use of an 

intrusion-detection system. A statistical analysis was conducted across suspicious-event 

data recorded from a honeypot and from a real network.  Metrics used in our study were 

applied to the alerts generated from Snort 2.4.3, an open-source intrusion detection 

system. Results showed differences between the honeypot and the real network data 

which need further experiments to understand.  Both the honeypot and the real network 

data showed much variability at the start of the experiment period and then a decrease in 

the number of alerts in the later period of the experiment.  We conclude that after the 

initial probing and reconnaissance is complete, the vulnerabilities of the network are 

learned and therefore fewer alerts occur; but more specific signatures are then aimed at 

exploiting the network.   
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I. INTRODUCTION  

Cyber-attacks are a serious problem that resulted in over $130 million in losses 

according to the 2005 CSI/FBI Computer Crime and Security Survey [1].  As indicated in 

their survey, virus attacks and unauthorized access led as the primary sources of financial 

loss.  An important security technology used to combat and understand these cyber-

attacks is the use of a honeypot.  A honeypot is a form of deception employed to detect or 

confuse unauthorized attempts on information systems. Honeypots have no productive 

value; therefore any interaction captured is deemed unauthorized.  This makes honeypots 

a powerful technology for gathering and understanding information on threats. 

The objective of this thesis is to distinguish attack patterns against a honeypot 

from those against other kinds of computers.  Varying the degree of deception on our 

honeypot, we conduct a statistical analysis of suspicious-event data collected from our 

high-interaction honeypot and that from data collected from our School’s internal 

network.  A high-interaction honeypot is defined as a network of computers using real 

operating systems and services, whereas a low-interaction honeypot is software installed 

that emulates different operating systems and services.  Typically, low-interaction 

honeypots have limited interactions, while high-interaction honeypots are more complex, 

therefore providing more data to be captured [2].  With these techniques we hope to 

measure the effectiveness of a honeypot by providing similarities and/or differences of 

the attack pattern under different configurations using various metrics.  In general, the 

goal of our research is to test the value of defensive deception for a computer system, and 

to describe and characterize the impact of deception when used on honeypots. 

The setup of the experiments reported here includes the installation and 

configuration of a honeypot and intrusion-detection system.  We collect and extract data 

from our honeypot and from the School’s network.  We evaluate the data collected and 

propose metrics to better analyze the suspicious-event data.  Based on these metrics, we 

model trends and compare them between the honeypot and the School's internal network.  

Metrics used in our study derive from alerts generated from Snort, an open-source 

intrusion-detection system.  An intrusion-detection system is hardware and/or software 
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that are used to detect inappropriate or suspicious activity.  Specifically, Snort produces 

alerts by identifying signatures of suspicious traffic. 

The purposes of a honeypot are for production or for research [2].  When used for 

production purposes, honeypots help prevent and detect attacks for those organizations as 

part of their defense posture.  The purpose of our study is for research.  We are not 

interested in capturing information on new tools or analyzing the communication method 

of the attacker but rather on the patterns of the suspicious-event data.  We want to 

understand the effectiveness and weaknesses of honeypots.  In addition, we want to find 

good metrics so that the massive amount of data is filtered so it can be effectively and 

systematically analyzed and correlated.   

The background of the key tools of the thesis such as honeypots and intrusion-

detection systems along with the survey of related work is described in Chapter II.  

Chapter III details the testbed setup, configuration, and rationale of the honeypot 

including hardware, software and network details.  In addition, a brief description of the 

School's network is provided, including specification of its hardware and network 

configuration.  The data analysis is described in Chapter IV.  Chapter V provides 

conclusions and suggestions for future work.  Appendix A details startup instructions of 

the honeypot, database, and intrusion-detection system.  Appendix B details additional 

options and necessary files of the lab experiment.  Appendix C provides additional graphs 

used in the data analysis of the honeypot. 
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II. BACKGROUND  

This chapter provides background related to our study.  The first section is a 

history and overview of honeypots and their use as a decoy system or a form of 

deception.  The second section is an introduction to intrusion-detection systems and the 

use and inner workings of Snort, the one we used.  The third section is a survey of related 

work in the area of honeypot effectiveness. 

A. HONEYPOTS 
The concept of honeypots has been around since before the invention of 

computers.  This concept involves a decoy computer system for which interactions are 

solicited.  The honeypot owner's purpose is to observe this interaction in hopes of gaining 

a better understanding of those entities interacting with the deception.  In the context of 

the cyber world, we define a honeypot as “an information system resource whose value 

lies in unauthorized or illicit use of that resource." [2]    

The popularity of honeypots has greatly increased over the last few years. The 

concept first surfaced in 1989 in Cliff Stoll’s “The Cuckoo’s Egg”.  It was not until the 

formation of the Honeynet Project in October 1999 that the concept was better 

formulated and organized as a way to learn more about the "blackhat" community, their 

tools, and their techniques.  (A "blackhat" is a malicious person or hacker who 

compromises the security of the system to gain unauthorized access to the computer 

and/or network [3].)  Founding members of the Honeynet Project were Marty Roesch, 

Chris Brenton, J.D. Glazer, Ed Skoudis and Lance Spitzner.  They would learn about 

hackers through honeypots or honeynets and share the knowledge through their website 

and publications.  In just a few years, interest in learning about the blackhat community 

greatly increased.  With the explosion of technology, computer use, and the need for 

better security measures, the Honeynet Project would eventually reach its limit.  Enter the 

Honeynet Research Alliance in January 2002, which consists of different organizations 

across the world facilitating the learning and sharing of knowledge through the 

deployment of honeynets.       
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The main kinds are low-interaction honeypots and high-interaction honeypots.  

Low-interaction honeypots, or shallow decoys, emulate services [2, 4].   They are 

typically easier to deploy than high-interaction honeypots, require less administrative 

expertise, and less resources.  Both an advantage and disadvantage of a low-interaction 

honeypot is that it limits the amount of interaction; while this minimizes the risk of what 

an attacker can do, it also limits the amount of data that is collected.  In addition, low-

interaction honeypots “cannot properly mimic the response of real services or determine 

activity after a compromise”[4]. High-interaction honeypots, on the other hand, are 

deployed with real operating systems and actual services.  They can generate an extensive 

amount of data.  Observing attackers exploiting services and operating system 

vulnerabilities, we discover new tools used, learn about motives, and capture unexpected 

behavior [2].  The disadvantage to high-interaction honeypots is the added level of 

complexity and risk.  They require more setup time, more monitoring time, more 

administrative expertise, and more resources to build and configure the specified 

operating system and services.  Note that to prevent discovery of both kinds of honeypots 

by attackers during reconnaissance, deception is crucial.  This could mean writing more 

elaborate scripts for low-interaction honeypots or customizing high-interactions 

honeypots. We used a high-interaction honeypot in the experiments reported in this 

thesis. 

The risk of using a high-interaction honeypot can be significant.  Potentially, an 

unmonitored honeypot can foster criminal activity by allowing storage and/or distribution 

of illegal materials, such as stolen credit card account numbers.  Compromised honeypots 

can also launch attacks on real computers or networks.  Therefore there are two criteria to 

minimize risk and maximize success: data control and data capture [2]. Data control 

involves restricting malicious activity to the perimeter of the honeypot; this can be done 

by limiting the outbound connections.  Data capture involves monitoring and logging all 

interactions.  By doing so, criminal activity can be prevented if noticed early enough by 

disabling the honeypot when suspect activities, such as increased inbound/outbound 

connections or transfer of files, occur; but this takes effort, time and expertise.  Real-time 

monitoring and analysis of the captured data is itself an intensive and laborious task and 

must not be taken lightly.  In addition, there must be careful consideration as to where 
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and how the data is logged.  Logging the data locally increases the risk of detection or 

worse tampering or corruption of the captured data.  “Captured data must be logged and 

stored on a separate, secured system.”[2].  

Honeypots have several other uses besides monitoring attackers. They serve to 

protect real networks and their data by acting as a decoy, deliberately confusing potential 

attackers.  A special kind of honeypot called a "sticky honeypot" aids in slowing down 

attackers or automated worms.  Honeypots also allow security administrators to discover 

and remedy weaknesses in the software and configuration of a host or network.  Their 

flexibility fits the dynamic nature of the cyber world. 

B. INTRUSION-DETECTION SYSTEMS 
An intrusion-detection system (IDS) is software that detects inappropriate or 

suspicious activity on a computer or network.  Intrusion is defined as any unauthorized 

access to a network, computer or file.  In addition to intrusion however, misuse  

(inappropriate activity) should be detected and logged by an IDS.  We further identify 

three types of IDSs: host-based, network-based, and distributed.  A host-based IDS 

resides on a single computer and protects just that computer; it monitors the operating 

system and detects modifications to files residing on the host system.  A network-based 

IDS can monitor more than one computer and is placed in a network; its "sensors" 

examine packets as they transit the network.  This is done by typically setting the 

Network Interface Card of a dedicated computer on the network to "promiscuous mode".  

The third type of IDS is a distributed IDS, which can combine both host-based IDSs and 

network-based IDSs; suspicious events from a set of IDSs are reported to a central 

database system [5].  Our testbed employed a centralized network-based IDS.  

IDSs are further distinguished by how the inappropriate activity is detected.  The 

two approaches are anomaly-based and signature-based (or rule-based) detection.  

Anomaly detection characterizes normal behavior and develops a profile of what is 

"normal"; suspicious activities are deviations from this profile.  An example anomaly-

based IDS is Stealth Watch [6].  Signature-based detection, uses a knowledge base of 

specific data (often bit strings) characteristic of previously identified attacks.    Detection 

of suspicious activities occurs when a known signature and a packet match.  An example 
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of a signature-based IDS is Snort, although it contains some anomaly-based detection 

features.  For our testbed, we deployed Snort version 2.4.3. 

1. Snort 2.4.3 
Snort® is an open source network intrusion prevention and detection 
system utilizing a rule-driven language, which combines the benefits of 
signature, protocol and anomaly based inspection methods. With millions 
of downloads to date, Snort is the most widely deployed intrusion-
detection and prevention technology worldwide and has become the de 
facto standard for the industry.[7] 

Snort is the default standard for intrusion detection. We also deployed it because 

we desired a similar data format to that obtained from the Network Security Group of the 

Naval Postgraduate School.  They use Snort to monitor the school’s network and 

graciously offered samples of their data and Snort rules for our research. 

a. Inner Workings of Snort 2.4.3 
We briefly discuss the Snort architecture and how attacks are detected.  

An important requirement of running Snort is the libpcap library for Linux systems or 

WinPcap for Windows systems; this library does packet capture.  Figure 1 is a high-level 

outline of the Snort architecture in relation to the TCP/IP Model.   



7 

 
Figure 1.   Snort Architecture 

 

The layer at which the packets are passed from host to host is at the 

datalink layer.  The packet-capture library reads the packets at this point so that the Snort 

engine can decode, detect, and alert as necessary.  Once the libpcap/WinPcap captures a 

packet, the following occurs [5]: 

1) The Packet decode engine decodes the packet based on the link 

layer protocol (e.g.  Ethernet, Token Ring, or PPP). 

2) The Preprocessor plug-ins handle the packets after the decoder 

has parsed them, by reassembling packets, decoding protocols, and 

doing anomaly-based detection. 

3) The Detection Engine is where packets are matched to rules to 

detect suspicious behavior.  By using a multi-pattern search 

algorithm, the detection engine checks multiple rules in parallel. 
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4) Detection plug-ins implements specialized tests. 

5) Finally, if alerts are generated, then the Output plug-in is called.  

This allows for various formatting and presentation of these alerts.  

Supported plug-in formats include UNIX syslogs, XML-formatted 

logs, and logging to relational databases such as Oracle, MySQL, 

or PostgreSQL. 

Figure 2 shows an incoming packet and the process involved before and 

after the Snort engine detects the suspicious-event data. The rule shown is designed to 

catch a UDP bomb attack.  The alert is triggered when the detection engine matches UDP 

packets going from any source IP address to any destination IP address, from port 19 to 

port 7 [5].  

     

              
Figure 2.   Snort Process of Detecting Suspicious Data 

 

The rule set ("knowledge base") used by Snort in examining packets is 

stored in a directory of text files.  Each text file is a ruleset; each ruleset contains a list of 
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rules similar to that of the UDP bomb attack.  It is important that one frequently update 

the rules so that new attacks are captured and properly alerted.  The default Snort package 

includes a rulebase with the rulesets shown in Table 1. 

                               

Default Ruleset
local.rules web-cgi.rules nntp.rules

bad-traffic.rules web-coldfusion.rules other-ids.rules
exploit.rules web-iis.rules web-attacks.rules
scan.rules web-frontpage.rules backdoor.rules
finger.rules web-misc.rules shellcode.rules

ftp.rules web-client.rules policy.rules
telnet.rules web-php.rules porn.rules
rpc.rules sql.rules info.rules

rservices.rules x11.rules icmp-info.rules
dos.rules icmp.rules virus.rules

ddos.rules netbios.rules chat.rules
dns.rules misc.rules multimedia.rules
tftp.rules attack-responses.rules p2p.rules

smtp.rules oracle.rules experimental.rules
imap.rules mysql.rules
pop2.rules snmp.rules
pop3.rules  

Table 1. Default Ruleset for Snort 2.4.3 
 

Rules can also be downloaded from the Snort website at www.snort.org 

from the Sourcefire Vulnerability Research Team (VRT).  Unregistered users can obtain 

a static ruleset at the time of a major Snort Release.  Registered users can download rules 

five days after a release to the subscription users.  Subscribers can download real-time 

rules as soon as they are available.  However, subscribers pay a fee of $195/month or 

$495/quarter or $1795/year.  In addition, Snort provides administrators with the 

flexibility and ease of creating their own rules.   

C. SURVEY OF RELATED WORK 

1. Effectiveness of Honeypots 
Some have defined the effectiveness of a honeypot by two measures: the ability to 

deceive and the ability to solicit attacks.  In [4] the authors compare the effectiveness of 

two low-interaction honeypots, Deception Toolkit (DTK) and Honeyd.  They measure the 
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effectiveness of the deception by determining the difference between the behavior of the 

honeypot to the behavior of real services.  The effectiveness of the solicitation is 

measured by the number of unique responses that are solicited from the attacking 

program.  A lab was setup to perform a series of anomaly scripts and known attacks.  The 

known attacks included different types of malware.  Automated scanners and auto-rooters 

were examples of a ‘Category III’ attack used in the experiment.  A paradox occurred in 

the results of the experiment.  Although the low-interaction honeypots did not deceive 

well according to their tests, they did however receive more attacks from automated 

scanners and auto-rooters than real systems did.  This is an important conclusion. Many 

systems attract common script kiddies or automated worms, botnets, and auto-rooters [8].  

The ability to solicit attacks aids the effectiveness of honeypots as it increases the amount 

of data that is collected.  We also conclude that the type of traffic that honeypots receive 

can depend on the type of deployment, i.e. low-interaction vs. high-interaction. Although, 

both low-interaction and high-interaction honeypots are effective in soliciting attacks, 

high-interaction honeypots have a better potential of improving the effectiveness of 

deception.  In high-interaction honeypots, we are not emulating services but in fact, 

implementing real services.  The only limitation is in our own ability to properly and 

creatively configure and deploy such systems.  As such, there is this opportunity and if 

done properly increases the chance of soliciting attacker activity in addition to the 

automated worms and botnets.  

One of the most active research groups contributing to the technology of 

honeypots is The Honeynet Project [9].  This project has grown into a community of 

organizations dedicated to learning about attacks, tools, and attacker motives.  But as the 

honeynet technology advances, so do attackers’ abilities.  In a counterfeit issue of an 

online hacker periodical, one of the Honeynet Project’s data-capture tools, Sebek was 

criticized.  Although the periodical was a hoax, some noteworthy points are made, such 

as that honeynet technology can be detected. In a rebuttal article [10] the author points 

out that honeynet technology is continually improved with the advancement of 

countermeasures by hackers, since there are counter-countermeasures.  In regards to 

detection, “the action of checking for a honeypot can give a detectable signature, leading 

to new, more specific techniques for detection”[10].  
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III. TESTBED SETUP, CONFIGURATION, AND RATIONALE  

This chapter details the hardware, software and layout of the honeypot network 

("honeynet") used in collecting data, and the problems encountered in setting up the 

experiment.  Also discussed is the general layout and configuration of the School’s 

network. 

A. EXPERIMENT SPECIFICATION  
We deployed a high-interaction honeypot, setting up a small network of 

computers.  An IP address was registered from SBC Internet Services so that direct 

connection to the Internet was possible. 

1. Hardware Specification 
Three computers were provided in the experiment and were networked together 

via crossover cable.  The other computers, as indicated in Figure 3, were virtual 

computers implemented inside one specific computer running special software.  Each 

computer was specifically tasked and labeled.  The resulting network comprised of the 

Router, the Honeypot, and the Data-Capture computers.  The Router’s purpose was to act 

as the portal from the outside world to the Honeypot while collecting data.  Therefore we 

installed three network interface cards (NICs).  The NIC connecting to the Internet was 

set to promiscuous mode so that packets could be sniffed.  The remaining two NICs 

connected the other machines.  One NIC was designated to the Honeypot, while the other 

transferred data to the Data-Capture machine.  The Honeypot machine served as the 

sacrificial information resource which solicited attacks.  The deployment of the Honeypot 

included running a virtual network of two computers with various services.  The Data-

Capture computer served to log and to store the captured data.  The hardware 

specifications of each system are listed in Table 2. 
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Router
(Dell Dimension XPS B933)

Processor Intel Pentium III - 933Mhz
Storage Maxtor (Ultra ATA) - 20.4GB

Memory 512 MB
NIC Davicom Semiconductor 21x4x DEC Tulip- Compatible 10/100Mbps

3Com 3C905C-TX Fast EtherLink 10/100Mbps
3Com 3C90SC-TX Fast EtherLink 10/100Mbps

Drives DVD-Rom, CD-RW, Zip, Floppy

Honeypot
(Dell OptiPlex GX520)

Processor Intel Pentium 4 - 2.80GHz
Storage (Serial ATA) - 40GB

Memory 1024 MB
NIC DELL NetXtreme BCM5751 Gigabit Ethernet PCI Express (integrated)

Drives CD-RW, Floppy

Data-capture
(Gateway)

Processor Intel Pentium 4 - 1.80GHz
Storage Western Digital (Ultra ATA) - 40GB

Maxtor (Ultra ATA) - 40GB
Memory 256 MB

NIC EthernExpress Pro/100 VE (integrated)
Drives CD-RW, Floppy  

Table 2. Experiment Hardware Specification 
 
2. Software Specification 
SUSE Linux 10 was installed on each computer.  Other software was added in 

accordance to the task of each computer.  Installed on the Router machine is the 

intrusion-detection system, Snort 2.4.3, Apache Webserver, and Basic Analysis and 

Security Engine (BASE).  The intrusion-detection system or Snort sensor serves to sniff 

inbound and outbound traffic to the honeypot and to send any captured data to the Data-

Capture machine.  Apache Webserver is an open-source Web server needed to run 

BASE.  BASE is an application that provides a web front-end to query and analyze the 

alerts coming from Snort.  Installed on the Honeypot box was VMware Workstation 5.5.  

VMware is a commercial software that allows for the creation and execution of multiple 
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operating systems simultaneously on a single physical machine [11].    Using VMware 

allowed for the option of growing our network into a more extensive honeynet.  Since we 

were limited to one machine, VMware allowed us to do so, simulating two additional 

operating systems.   

The initial environment on the Honeypot had one guest operating system installed 

on the VMware, Microsoft Windows 2000 Advanced Server with Service Pack 4, the 

most recent Service Pack.  We opted to use Service Pack 4 because we realized that 

Service Pack 1 was too vulnerable to autonomous agents such as bots and worms.  We 

wanted our high-interaction honeypot to appear more like a legitimate network on which 

system administrators would install the latest service patch and updates.  We also 

installed a Windows XP Professional with Service Pack 2, upgrading our honeypot to a 

honeynet.  Services running on Windows 2000 Server included Internet Information 

Service (IIS) 5.0, FTP and Telnet.  Internet Information Services is Microsoft’s Web 

server application which provides users with a manageable and scalable Web application 

infrastructure [12]. Our setup contained a simple Web page consisting of photographs.  In 

addition, we added a shared folder and placed text files and word documents inside.  One 

group and two users were added to each of the Windows machine.  We also installed 

AOL Instant Messenger (AIM), is a free instant messaging service on our Windows XP 

machine.  We setup an account and configured AIM to start at boot-up.  

The Data-Capture box was purposely segregated on a separate subnet than that of 

the Honeypot.  Information obtained from the Router was directed to the Data-Capture 

box and stored on a database.  We used PostgreSQL 8.1.1, an open-source relational 

database system.  Rather than log alerts into files, we anticipated a high volume of traffic 

and therefore wanted the ability to easily access and view in real time the captured data.  

Using a database provided us with the categorization and querying benefits needed to 

efficiently filter the output to suit our needs.  By using the database plug-in made 

available by the Snort intrusion-detection system, alerts are quickly “sorted, searched and 

prioritized in an organized manner” [13].  Presented in Figure 3 is an overview of the 

database structure and their relationships.  Most tables include just the primary-keys field.  

There are additional fields not shown for each table. 
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Figure 3.   Snort Database Structure [13] 

 

The event table is the main focus of the database structure.  It represents the meta-

data of all detected alerts captured from our Router to and from our Honeypot machine.  

The signature and sig_class tables are also important in determining the type of 

signatures and classifications of each alert. 

The software specifications of each system are listed in Table 3. 

Router - SUSE Linux 10
Primary Goal sniff traffic, send capture data to Data-Capture machine

Software Snort 2.4.3 - (intrusion-detection system)
Basic Analysis and Security Engine (BASE) - (web front-end to 
query and analyze the alerts coming from a Snort)
Apache - (webserver)  

Honeypot - SUSE Linux 10
Primary Goal honeypot, solicit attacks

VMWARE Workstation 5.5 running 
                    Windows 2000 Advanced Server with SP4 and 
                    Windows XP Professional with SP2

Data-Capture - SUSE Linux 10
Primary Goal store Snort data

PostgreSQL 8.1.1 - (database)  
Table 3. Experiment Software Specification 

 



15 

3. Network Configuration 
The Naval Postgraduate School provided an Internet connection outside the 

School’s firewall.  By putting our network outside the firewall, we hope to see more 

attacks while protecting the School's internal network.  The Router machine contains 

three NICs.  One NIC is connected to the Internet.  The second NIC connects from the 

Router to the Honeypot machine.  The third NIC connects to the Data-Capture machine. 

The Honeypot and Data-Capture machines are on separate subnets.  The network 

configuration is presented in Figure 4. 

 
Figure 4.   Experiment Network Configuration 
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4. Problems Encountered 
Problems and issues were caused by limited resources and a lack of 

familiarization with Linux and the other applications. Much of the hardware was 

scrounged from obsolete computers retired from the computer-science and software-

engineering departments.  We were able to cull various parts such as hard drives, RAM, 

and NICs to build two functional computers.  We decided to dedicate the newer and 

fastest computer to the Honeypot because of the need to run VMware and to use the other 

computers to route and collect data.  

We also had to scrounge for software.  Our choices were between using retired 

software and shareware.  Through the generosity of the networking group of the Naval 

Postgraduate School we were able to obtain a copy of Microsoft Windows 2000 

Advanced Server.  Other software such as SUSE Linux 10, Snort 2.4.3 and PostgreSQL 

were open-source.  We had originally installed Redhat Linux 9.0 on the two older 

computers but ran into a strange error message when attempting to install this version of 

Linux onto the newest computer.  After doing some research, we discovered that the 

newer computer included a serial-ATA (SATA) hard drive that was not compatible with 

the older Linux kernels.  Online advice suggested that we use a newer Linux kernel and 

therefore we obtained a copy of SUSE Linux 10 and re-installed.  This led to our next 

problem.  We originally attempted to install VMware 5.0 onto our Honeypot but realized 

that version 5.0 was not supported on SUSE Linux 10.  Fortunately, we were able to 

upgrade to VMware 5.5 and completing the installation onto the Linux box was 

unproblematic. 

A significant part of this project was in learning to use Linux. For those trained on 

Windows where much installation and configuration is aided with GUI, Linux initially 

was intimidating.  Installation of a program was no longer double clicking an executable, 

but understanding the commands "configure", "make", and "make install".  In addition, 

Linux meant a world of dependencies and more often than not, installing a program 

meant finding, downloading, and installing several other programs or libraries.  There 

was a learning curve. 
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B. THE SCHOOL NETWORK  
The School’s network layout and specification is far more complex since it must 

support nearly 1,500 students and over 600 faculty and staff members. 

1. Hardware/Software Specification 
The NPS network serves to connect students, educators and staff both internally 

and externally to the Internet.  There are numerous hardware equipment including 

workstations, servers, and printers disbursed throughout the campus.  Most faculty and 

staff have their own workstation running various operating systems like Microsoft 

Windows and/or a UNIX variant.  In addition, the academic buildings provide students 

with laboratories running Microsoft Windows in which to complete assignments and 

research.  Various software is installed at each laboratory on each workstation.  

The School deploys two intrusion-detection systems, StealthWatch and Snort.  

We are concerned here only with the captured data from Snort.  Currently, there are two 

Snort sensors.  Sensor 1 is placed in front of the firewall, capturing all packets bound to 

the school, whether blocked or allowed by the firewall.  The other sensor is placed behind 

the firewall, monitoring internal traffic.  Sensor 2 captures all allowed inbound traffic and 

all blocked or allowed outbound traffic.  Both sensors record successful connection, 

therefore some events are logged twice.  All captured data is sent to a secure server 

running Microsoft SQL Server 2000 database.   

To obtain the School’s captured data, we created an ODBC connection.  Open 

Database Connectivity (ODBC) is an application programming interface that provides 

access to various types of databases.  The School provided our research with read-only 

access to the SQL Server database storing the Snort data.  (See section C of Appendix B 

for detail instructions on how to create an ODBC connection.) 

2. Network Configuration 

Figure 5 is an overview of the School’s network configuration.  The captured data 

provided to us by the school is from Snort sensor 1.   
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Figure 5.   School’s Network Configuration 

 
3. Problems Encountered 
At the time of our experiment setup, the NPS Network Security Group was going 

through some major changes.  The change that affected our research was the staff change 

involving the lead security engineer.  His insight and expertise was pivotal in 
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understanding the network layout and resolving most of our issues in a timely manner.  

Shortly after his departure from NPS, the server containing all the archival Snort data 

crashed.  The server was sent to a data recovery facility; three months later, we were 

informed that the data could not be recovered from the server.  The Network Security 

Group then put much effort into rebuilding the server and reinstalling and reconfiguring 

Snort. During the time of this writing, about two weeks of data was accumulated, 

although we would have liked more.  This data is used in our analysis. 
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IV. DATA RESULTS AND EVALUATION  

A. HONEYPOT DATA ANALYSIS  
Collection of suspicious-event data from our honeypot was done January 29, 2006 

through March 18, 2006.  The alerts were collected daily and then accumulated on a 

week-by-week basis, starting from Sunday and ending on Saturday.  The last two weeks 

are the only period with an overlap to data of the School’s network.  The metrics used in 

our analysis is presented in Table 4. 

Metrics Used in Honeypot
Distribution of Alerts over Collection Period
Distribution of Alerts by Week
Distribution of Alerts by Hour
Distribution of Classification
Distribution of Signatures  

Table 4. Metrics Used in Honeypot Analysis 
 
1. Distribution of Alerts 

a. Alerts over Entire Collection Period 
We first show the distribution of alerts over the entire seven week 

experiment in a time plot.  Figure 6 represents all the generated alerts triggered and 

recorded by our Data-Capture machine for a given day.  The number of alerts varied 

widely, especially during the first half of the collection period with spikes on January 

31st, February 6th, and February 22nd of 8,987, 11,381, and 11,067 respectively.  In the 

latter half of the collection period the alerts appear to subside but again spike on March 

5th and March 9th, with 3,786 and 4,516 alerts respectively.  This plot provides us with a 

good sense of the volatility of the Internet and the incoming alerts, and in particular its 

non-Poisson “bursty” nature.  This unpredictability makes expressing the probability of a 

number of alerts for a fixed time unfeasible. 
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Distribution of Alerts
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Figure 6.   Honeypot Time Plot of Distribution of Alerts 

 
b. Alerts Compared by Week 
Based on the tabulations of Table 5, we present boxplots of each week as 

shown in Figure 7.  Here, we are provided with a measure of the spread of the middle 

50% of the alerts for each week.  Easily notable are the extreme values presented in the 

boxplot.  The maximum number of alerts are the outliers for the weeks presented.  In 

addition, the interquartile ranges (IQR) of week 2 and week 4, (4,873 and 3,981 

respectively) about nearly double over the other weeks.  This is an indication of less 

consistency for those particular weeks.  Something else apparent is that the alerts seem to 

be subsiding in the latter half of the collection: From week 4 on, there are fewer alerts 

reported. Looking at the boxplot, there is a dotted line running over the spread of the 

alerts.  The distribution is skewed to the right indicating that the majority of alerts came 

in the beginning of our collection period and has lessened towards the end.  
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1/29-2/04 2/05-2/11 2/12-2/18 2/19-2/25 2/26-3/04 3/05-3/11 3/12-3/18
Week1 Week2 Week3 Week4 Week5 Week6 Week7

Q1 569 2,782 679 307 288 436 231
Minimum 419 2,357 272 250 159 331 167

Median 865 5,389 1,022 923 327 778 314
Maximum 8,987 11,381 1,950 11,067 2,758 4,516 1,118

Q3 1,353 7,655 1,362 4,288 716 2,733 438
IQR 784 4,873 683 3,981 428 2,298 207

Mean 2,016 5,714 1,046 3,061 750 1,709 419  
Table 5. Honeypot: Summary of Numbers of Snort Alerts 
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Figure 7.   Honeypot Box Plot by Week 

 
c. Alerts by Hour 

Of interest are the alerts generated at specific times in the day.  In Figure 8 

we display the number of alerts generated each hour for a seven-day period for each of 

the weeks in our collection.  We notice the irregularities of the incoming alerts.  Each 

week has at least one significant spike.  In at least five of the seven weeks, there are 

spikes early in the day.  For example, in the first three weeks, spikes occurred at the 10 

and 6 o’clock hours.  With the exception of the week of Feb. 26, alerts subside in the 

latter hours of the day, which suggests that most attackers are in North America or that 

attacks from zombie computers are local.  This also suggests that the attacks are probably 
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not real attackers or even script kiddies.  Attacks at a constant and specified time indicate 

that they are more likely automated botnets or scanners. 

Distribution of Alerts by Hour
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Distribution of Alerts by Hour
(Feb.05 - Feb.11)

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0:00 2:00 4:00 6:00 8:00
10:0

0
12:0

0
14:0

0
16:0

0
18:0

0
20:0

0
22:0

0

N
um

be
r 

of
 A

le
rt

s

 

Distribution of Alerts by Hour
(Feb.12 - Feb.18)
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Distribution of Alerts by Hour
(Feb.19 - Feb.25)
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Distribution of Alerts by Hour
(Feb.26 - Mar.04)
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Distribution of Alerts by Hour
(Mar.05 - Mar.11)
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Distribution of Alerts by Hour
(Mar.12 - Mar.18)
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Figure 8.   Honeypot Alerts by Hour per Week 
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2. Distribution of Classification 
All Snort alert rules are given a classification.  Our honeypot data included 

sixteen of the classifications presented in Table 6 which are highlighted in yellow.  The 

classifications are grouped by priority.  The priority number indicates the severity of the 

alert, i.e. priority 1 being the most severe.  For more detail on the alerts classification per 

week, please see Appendix C. 
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   Critical Classification (Priority 1)  
Classtype or name Brief Description
attempted-admin attempted administrator privilege gain
attempted-user attempted user privilege gain
shell-code-detect executable code was detected
successful-admin successful administrator privilege gain
successful-user successful user privilege gain
trojan-activity a network Trojan was detected
unsuccessful-user unsuccessful user privilege gain
web-application attack web application attack

   Intermediate Classification (Priority 2)  
Classtype or name Brief Description
attempted-dos attempted dos
attempted-recon attempted information leak
bad-unknown potentially bad traffic
denial-of-service detection of dos attack
misc-attack miscellaneous attack
non-standard-protocol detection of nonstandard protocol or event
rpc-portmap-decode decode of an RPD query
successful-dos denial of service
successful-recon-largescale large-scale information leak
successful-recon-limited information leak
suspicious-filename-detect a suspicious filename detected
suspicious-login an attempted login using a suspicious username was detected
system-call-detect a system call was detected
unusual-client-port-connection a client was using an unusual port
web-application-activity access to potentially vulnerable Web application

   Low-Risk Classification (Priority 3)  
Classtype or name Brief Description
icmp-event generic ICMP event
misc-activity miscellaneous activity
network-scan detection of network scan
not-suspicious not suspicious traffic
protocol-command-decode generic protocol command decode
string-detect a suspicious string was detected
unknown unknown traffic  

Table 6. Snort Alert Categories [5] 
 

Figure 9 shows the frequency of alerts generated in each classification for the 

collection period.  The most common classification with 65.8% is protocol-command-

decode.  These generated alerts or signatures are particular to NetBIOS Name Service, in 
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which packets are designated for NetBIOS TCP and UDP ports 135-139.  Our honeynet 

runs Windows 2000 Advanced Server and Windows XP where NetBIOS over TCP/IP is 

enabled.  With the numerous vulnerabilities associated with NetBIOS, we expect a high 

volume of this class of attacks.   
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Figure 9.   Honeypot: Frequency of Classification 
 

Figures 10 and 11 show the frequency of alerts generated in each classification by 

week.  Figure 10 displays the major classifications that generated alerts per week.  

Despite the big spike in alerts with protocol-demand-code, we see a constant oscillation 

from week to week.  Figure 11 is the same graph with the protocol-command-code 

removed.  Classifications such as unsuccessful-user and network-scan remained constant 

throughout, while shellcode-detect and misc-attack showed an increase over time.  

Network-scan is part of the Internet noise that is constantly occurring.  Attacks that we 

are more concerned with and have higher priorities are the shellcode-detect and misc-

attack.  The shellcode-detect is a detection of an executable code.  There are numerous 
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malicious codes that spread through exploitation of vulnerable services.  Once these 

vulnerable services are known, we see an increase of malicious code targeting our 

honeynet. 

Distribution of Classification Relative to Weekly Alert
(Jan.29 - Mar.18)
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Figure 10.   Honeypot: Alert Class Percentage over Time 

 
 

Distribution of Classification Relative to Weekly Alert
(without protocol-command decode)
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Figure 11.   Honeypot: Alert Class Percentage without Protocol-Command Decode. 

 



29 

 

3. Distribution of Signatures 
Seventy-eight different Snort alerts (signature matchings) were generated over the 

collection period.  The alerts can be grouped into Snort categories, as for example all 

ICMP signatures such as ICMP PING Windows, ICMP PING *NIX, ICMP trace route, 

etc. were grouped into the category of ICMP signatures.  Figure 12 shows the frequency 

of signature classes over our entire collection period.  The most common category are 

NETBIOS signatures.  We expect that with typical packet traffic there are certain alerts 

that occur more often than others.  
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Figure 12.   Honeypot:  Frequency of Alert Signature Category 
 

Figure 13 shows the individual frequency of alert-signature categories.  The 

percentage was calculated by totaling the alerts in a category and dividing by the total 

number of alerts that week.  Both MS-SQL and SHELLCODE signatures show an 

increase in alerts over the weeks.  ICMP and SNMP signatures show a significant spike 

in week 5 and then suddenly drop, suggesting they are due to different attackers than the 

other attacks.  The WEB and NETBIOS signatures both oscillate. 
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Figure 13.   Honeypot: Individual Frequency of Alert Signature Categories 
 

In our initial analysis, using only a 26 day period, we compared data from the first 

13 days with that of the last 13 days.  We use clustering to process each new alert by 

considering all identical alerts within a 10 minute or less as one single event.  Clusters 

greatly reduce the effect of one attacker repeatedly trying the same thing.  Table 7 shows 

raw alerts and clustered generated for each of the snort alert class.  As with the MS-SQL 

graph from Figure 13, we see an increase in raw alerts as well as an increase in clusters.  

Table 7 further breaks down the Web signatures.  We see that WEB-PHP alerts increase 

while WEB-IIS, WEB-ATTACKS, WEB-FRONTPAGE, and WEB-MISC decrease.  

The initial analysis is an indication that our honeypot and its vulnerabilities are being 

recognized and thus attack behavior is adjusting accordingly. 



32 

1/23 - 2/5 2/6 - 2/19

Snort Alert Class Raw Count

Time-
Clustered

Count Raw Count

Time-
Clustered

Count
NETBIOS 11,491 451 38,100 463
BAD-TRAFFIC 1,854 409 2,274 418
MS-SQL 1,377 1,095 1,647 1,260
INFO 14 7 2,713 6
SHELLCODE 1,212 420 880 275
ICMP 545 124 952 121
WEB-PHP 104 12 215 22
WEB-CGI 98 25 97 25
WEB-IIS 19 16 135 9
WEB-ATTACKS 30 9 0 0
WEB-FRONTPAGE 4 2 0 0
WEB-MISC 15 7 2 2
SCAN 23 25 33 24
POLICY 14 13 19 17
EXPLOIT 20 4 3 3
SNMP 6 3 6 3
ATTACK-RESPONSES 1 1 0 0  

Table 7. Snort Alert Counts by Type Compared for Two Successive 13-day 
Periods.[14] 

 
B. SCHOOL NETWORK DATA ANALYSIS 

Collection of suspicious-event data from our school’s firewall was done March 2, 

2006 through March 18, 2006.  The alerts were collected daily and then accumulated. 

Only alerts from sensor 1 were collected, which sits outside the school’s firewall and 

captures all inbound/outbound traffic blocked or allowed by the firewall.  Alerts 

generated from sensor 1 will therefore capture any potential attacks. 

1. Distribution of Alerts 

a.  Alerts over Entire Collection Period 
We first show the distribution of alerts over the ten day period in a time 

plot.  Figure 14 represents all the generated alerts triggered and recorded by sensor 1 for a 

given day.  The number of alerts varied widely, especially during the first few days  
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because the NPS Networking Group was still in the process of tuning their Snort sensor.  

In addition there were no alerts collected for the days of March 11th and 12th, and only 

partial data on March 10th, 13th, and 18th. 
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Figure 14.   School: Time Plot of Distribution of Alerts 

 
b. Alerts by Hour 
In Figure 15, we display the number of alerts generated each hour for the 

ten-day period.  All alerts for the ten days were summed by the hour.  There are two 

meaningful spikes, one at 10:00 and one at 4:00 o’clock.  These suggest that most 

attackers are on Pacific Standard Time.   
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Figure 15.   School: Alerts by Hour 

 
2. Distribution of Classification 
Figure 16 shows the distribution of classifications accumulated over the ten-week 

period.  Web-application-activity and bad-unknown are the most frequent occurring 

classifications.   
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Figure 16.   School: Frequency of Alert Classification 

 
3.  Distribution of Signatures 
One-hundred and forty-two different alerts in 23 categories were generated over 

the collection period.  Figure 17 shows the distribution of alert (signature) categories.  

Since alerts are being generated by both inbound and outbound connections, we are 

seeing a variety of categories not witnessed in the honeypot data.  The frequency of 

signature categories is related to type of network and the users of this network.  In our 

case, the users of this network are students; therefore increased traffic is seen in WEB 

and INFO-FTP.  Other interesting signature categories include PORN and P2P.  P2P type 

signatures are software applications for peer-to-peer sharing of data.  Specifically, the 

School’s data shows signatures of popular two popular music sharing software, 

“Gnutella” and “Kazaa.”   
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Figure 17.   School: Frequency of Alert Signature Category 

 

C. COMPARISON OF HONEYPOT DATA TO REAL NETWORK DATA 
We did not see any significant similarities between the honeypot and the school’s 

firewall data.  This suggests that attackers recognize the two sites as quite different and 

use different attacks against each.  In fact, some categories seemed to be negatively 

correlated, suggesting that attackers are less likely to launch a particular attack on one 

site if they are already doing it on the other.  A notable missing category from the 

school’s data is NETBIOS.  Because of the large number of alerts generated in this 

category, the school chose to comment out the rule from their Snort configuration file, i.e. 

not to generate any alerts for incoming packets matching the NETBIOS rules.  Thus we 

cannot say whether NETBIOS attacks are similar on the two sites.    
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V. CONCLUSION AND FUTURE WORK  

A. CONCLUSION  
In both the honeypot and school’s network, there is much randomness to the 

alerts.  Despite the noise, we did observe a definite decrease in the number of alerts on 

our honeypot over the weeks, and no decrease on the school’s firewall in some of the 

same time period.  It appears that after the tuning is complete on a honeypot and the 

deployment is stabilized, i.e. there is no missing data, that there will be a decrease in 

alerts.  We conclude that after the initial probing and reconnaissance is complete, the 

vulnerabilities of the honeypot are learned and therefore fewer alerts occur; but more 

specific signatures are then aimed at exploiting the honeypot.  Of course, the Networking 

Security Group is constantly monitoring their alerts; if vulnerabilities are found, the 

administrators quickly remedy this breach and therefore, there is stabilization with the 

number of alerts. 

B. FUTURE WORK 
A goal of this thesis was to develop a methodology for obtaining statistics about 

cyber-attack trends over time.  Therefore, future work should include running and 

monitoring of the honeynet system for a longer period of time.  In addition, as attackers, 

automated worms, botnets, and auto-rooters evolve, honeypot architecture must also 

evolve in its installation and configuration.  We must also anticipate that the honeynet’s 

IP address and its associated architecture, its operating system, and its services will be 

learned.  After sufficient data has been collected with the previous setup, a fresh and 

dissimilar architecture should be deployed.  Differences in architecture should include 

changes in the number of operating systems, types of operating systems, and types of 

services.  Again, this newer deployment should be monitored for a long period of time. 

Another goal of the thesis was to present a comparative analysis of the honeypot 

data with that of the School’s network data.  Much more can be extracted and compared, 

in particular because we had limited data from the School.  

Finally, we identify issues that could aid in the advancement of honeynet 

research:  
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1. Extract more metrics on alerts such as, IP source address, source and 

destination port numbers, time-to-live values, and types of protocols, and 

calculate statistics on these. 

2. Develop a more efficient way of automatically consolidating, clustering, 

and analyzing extracted data. 

3. Develop and implement methods to adjust the honeypot data with the 

School’s data in the same time period. 

4. Using different configurations, try to prove what clues attackers are 

responding to during reconnaissance of a honeypot. 

. 
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APPENDIX A. STARTUP INSTRUCTIONS 

A. STEP-BY-STEP STARTUP INSTRUCTIONS 
These are the steps required to start the machines used in the experiments reported 

in this thesis.  First, the three computers must be powered on and connected per the 

Testbed Setup.  If computers are powered off, power on each computer (i.e. Router, 

Honeypot, and Data-Capture), boot into SuSE Linux 10.0, and log on. 

1. Instructions for Starting Honeypot Machine 
Once logged onto the Honeypot, perform these instructions to start VMware and 

power on the virtual honeynet environment. 

1)  Open terminal. 

2)  At prompt issue command: vmware. 

3)  Select Windows 2000 Advanced Server in the Favorites pane on the 

left of the workstation window.   

4)  Click on Power on this virtual machine. 

5)  Select Windows XP Professional 2 in the Favorites pane on the left of 

the workstation window. 

6)  Click on Power on this virtual machine. 

2. Instructions for Starting Data-Capture Machine 
Once logged onto the Data-Capture machine, perform these instructions to start 

PostgreSQL database server.  

1)  Open terminal. 

2)  Change directory by issuing command:  cd  /etc/init.d. 

3)  Start PostgreSQL by issuing command:  ./postgres start. 

(Optional)  These instructions allow users to log onto terminal-based front end to 

PostgreSQL.  Once logged in, users have the option to type in queries interactively to 

PostgreSQL and see the query results. 

 1)  Open terminal. 
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 2) Change directory by issuing command:   

  cd  /usr/local/postgres-8.1-1/bin/. 

 3) To login into database issue command:   

  ./psql –h  /var/tmp –U  <username> <name of database>. 

 4)  Type in appropriate password when prompted: <password>. 

3. Instructions for Starting Router Machine 
Once logged onto the Router, perform these instructions to download the latest 

rule set and start Snort 2.4.3. 

1)  Open terminal. 

2)  Change directory by issuing command:  cd  /etc/cron.daily. 

3)  Run oinkmaster script by issuing command:  ./oinkmaster. 

4)  Change directory by issuing command:  cd  /etc/rc.d. 

5)  Start Snort 2.4.3 by issuing command:  ./snort start. 

 (Optional)  These instructions allow users to remotely log onto terminal-based 

front-end to PostgreSQL.  Once logged in, users have the option to type in queries 

interactively, issue them to PostgreSQL, and see the query results. 

 1)  Open terminal 

 2)  Change directory by issuing command:   

  cd  /usr/local/postgres-8.1-1/bin/ 

 3)  To login into database issue command:   

  ./psql –h  10.0.0.10 –U  <username> <name of database> 

 4)  Type in appropriate password when prompted: <password> 

(Optional)  These instructions start Apache web server and Basic Analysis and 

Security Engine (BASE). 

 1)  Open terminal. 
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 2)  Change directory by issuing command:  cd  /etc/init.d. 

 3)  Start Apache web server by issuing command:  ./apache2 start. 

 4)  Open web browser. 

 5) In the Location bar type: http://localhost/base/base_main.php. 
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APPENDIX B. DETAILS OF LAB EXPERIMENT 

A. ROUTER CONFIGURATION 
This section details scripts, files and directories associated with Snort 2.4.3, 

Apache webserver, BASE, and PostgreSQL.  Included with each section are the 

additional options of the startup scripts. 

1. Details of Necessary Files 
Name of File Location Description
*.rules /usr/local/snort/rules Text files of Snort rules
apache2 /etc/init.d Shell script to run Apache webserver
base_main.php /srv/www/htdocs/base Main web page of BASE

oinkmaster /etc/cron.daily

Shell script to read Oinkmaster 
configuration file, download latest ruleset, 
unpack and apply any changes to snort rule 
directory

oinkmaster.conf /etc/oinkmaster.conf Oinkmaster configuration file

oinkmaster.pl /usr/local/bin/

Original perl script to download latest 
ruleset, unpack and apply any changes; 
requires additional parameters, e.g. location 
of Oinkmaster configuration file and 
location of snort rules

psql /usr/local/postgres-8.1-1/bin
Executable for PostgreSQL interactive 
terminal

snort /usr/local/snort/bin Executable for Snort
snort.conf /usr/local/snort/rules Snort configuration file
snort.pl /etc/rc.d Script to start/restart/stop/reload Snort  

Table 8. Essential Files of the Router Machine 
 
2. Options and Details for Apache Script 

Other parameters can be passed to the Apache script.  Users must change 

directory to /etc/init.d and issue the following command, ./apache2, to view additional 

options.  The basic commands required to start and stop the webserver are as follows: 

• Start Apache:  ./apache2 start. 

• Stop Apache:  ./apache2 stop. 

3. Options and Details of Oinkmaster Script 



44 

For more information on using Oinkmaster, please reference, 

http://oinkmaster.sourceforge.net/.  The shell script located in /etc/cron.daily is the basic 

command to run the Oinkmaster Perl script.  The -o <directory> is a required argument.  

The downloaded files are compared to any existing rules in this directory before 

overwriting them.   

Oinkmaster Perl script: 

------------------------------------------------------------------------------------ 
#!/bin/bash 
/usr/local/bin/oinkmaster.pl -o /usr/local/snort/rules/ 

/usr/bin/killall -HUP snort 

-------------------------------------------------------- 
4. Options and Details of PostgreSQL Interactive Terminal 

For additional instructions on accessing the PostgreSQL Interactive Terminal, 

please reference, http://www.postgresql.org/docs/8.1/static/tutorial-accessdb.html.  

Included in this section are the names of users and the database created for our lab 

experiment.   

One database was created.   

• Name of database: snortdb 

Two users were created. 

• Super user name: binh 

• User with write permission: snortadmin 

Example of command to remotely log into database: 

./psql –h  10.0.0.10 –U  snortadmin snortdb 

a. Sending Query Results to a File 
 In PostgreSQL Interactive Terminal, use the –o switch to send queries to a 

file.  When logged on from Router machine, follow the instructions provided below     

1)  Open terminal. 

2)  Change directory by issuing command:   
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 cd  /usr/local/postgres-8.1-1/bin. 

 3) Login into database issuing -o command:   

  ./psql -h 10.0.0.10 -U <username> <name of database> -o 

<name of file> 

 For example, 

  ./psql -h 10.0.0.10 -U binh snortdb -o '/root/data/query/test.txt' 

4)  Once logged in, type in query and results will output to specified file. 

This is an example of a query to obtain various information for a given day. 

SELECT event.timestamp, signature.sig_sid, signature.sig_priority, 
 signature.sig_name, signature.sig_class_id, sig_class.sig_class_name, 
 int8ip_to_str(iphdr.ip_src) as ipSrc, int8ip_to_str(iphdr.ip_dst) as ipDest, 
 iphdr.ip_ttl, iphdr.ip_proto as ipProtocol, event.cid as eventID 

FROM (event INNER JOIN iphdr ON event.cid = iphdr.cid) INNER JOIN 
 (sig_class INNER JOIN signature ON sig_class.sig_class_id = 
 signature.sig_class_id) ON event.signature = signature.sig_id 

WHERE (event.timestamp > '2006-03-09 23:59:24.912-08') AND    
(event.timestamp < '2006-03-11 00:00:02.194-08') AND (event.sid = iphdr.sid) 

ORDER BY event.timestamp ; 

 

5. Options and Details of Snort Script 
Other parameters can be passed to the Snort script.  Users must change directory 

to /etc/rc.d and issue the following commands to: 

• Start Snort:  ./snort start 

• Restart Snort:  ./snort restart 

• Stop Snort:  ./snort stop 

• Reload Snort:  ./snort reload 

The details of the Snort script reads: 

------------------------------------------------------------------------------------ 
#!/bin/bash 
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case "$1" in 
 start) 

/usr/local/snort/bin/snort -D -i eth0 –c  
/usr/local/snort/rules/snort.conf 

;; 
stop) 
/usr/bin/killall snort 
;; 
restart) 
/usr/bin/killall snort 
/usr/local/snort/bin/snort -D -i eth0 –c   

/usr/local/snort/rules/snort.conf 
;; 
reload) 
/usr/bin/killall -HUP snort 
;; 
*) 
echo "Usage: $0 {start|stop|restart|reload}" 
exit 1 

esac 

------------------------------------------------------------------------------------ 

B. DATA-CAPTURE CONFIGURATION 
This section details scripts, files and directories associated with PostgreSQL.  For 

additional instructions on starting the PostgreSQL database, please reference   

http://www.postgresql.org/docs/8.1/static/postmaster-start.html. 

1. Details of Necessary Files 
Name of File Location Description

pg_ctl /usr/local/postgres/bin
Starting the database server program; 
requires additional parameters

postgres.pl /etc/init.d
Script to start/restart/stop/reload 
PostgreSQL server program

postgresql.conf /var/pgdata/ Postgresql configuration file  

 Table 9. Essential Files of the Data-Capture Machine. 

 

2. Options and Details of PostgreSQL Script 

Other parameters can be passed to the PostgreSQL script.  Users must change 

directory to /etc/init.d and issue the following commands to: 

• Start PostgreSQL server:  ./postgres start 

• Restart PostgreSQL server:  ./postgres restart 

• Stop PostgreSQL server:  ./postgres stop 
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• Reload PostgreSQL server:  ./postgres reload 

The details of the PostgreSQL server script reads: 

------------------------------------------------------------------------------------ 
#!/bin/bash 
case "$1" in 
 start) 
 /bin/su postgres -c "/usr/local/postgres/bin/pg_ctl -D 
/var/pgdata/ start" 
 ;; 
 stop) 
 /bin/su postgres -c "/usr/local/postgres/bin/pg_ctl -D 
/var/pgdata/ stop" 
 ;; 
 restart) 
 /bin/su postgres -c "/usr/local/postgres/bin/pg_ctl -D 
/var/pgdata/ restart" 
 ;; 
 reload) 
 /bin/su postgres -c "/usr/local/postgres/bin/pg_ctl -D 
/var/pgdata/ reload" 
 ;; 
 *) 
 echo "Usage: $0 {start|stop|restart|reload}" 
        exit 1 
esac 

------------------------------------------------------------------------------------ 

C. HOW TO SETUP ODBC CONNECTION TO NPS NETWORK 
This section details how an ODBC connection was created to access the Snort 

data on the NPS network server.  We were granted read-only access to three separate 

databases: SnortCurrent, Snort8-30, and SnortStatistics.  Once logged into the NPS 

domain, we setup the connection from a Windows XP computer.  The instructions are as 

follows: 

1) Goto Control Panel-> Adminstrative Tools -> Data Sources (ODBC) 

2) From ODBC Data Source Adminstrator screen:  Add -> MS Access 

Database  

3) From New Data Source:  SQL Server -> Finish 

4) From Data Source to SQL Server: 

   Enter name: (e.g. SnortCurrent) 
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   Enter Server: 172.20.48.54 -> Next 

5) Enable 'With SQL Server authentication using login ID and password entered 

by the user’ 

   Enter Login ID:  <username> 

   Enter password:  <password> 

(NOTE: Request access to database server and verify server ip address with 

NPS Network Security Group) 

6)  Click on Client Configuration button 

7) From Edit Network Library Configuration: 

   Select: TCP/IP 

   Server name: 172.20.48.54 

   Port number: 2433 

8) Test connection -> Okay 
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APPENDIX C. ADDITIONAL GRAPHS 

A. HONEYPOT CLASSIFICATION ANALYSIS 
This details the occurrence of an alert by its classification by day for each of the 

seven weeks in our study.  Figure 13 is the Legend associated with Figures 14 – Figure 

20. 

 

 
 

Figure 18.   Honeypot Classification Legend 
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Figure 19.   Honeypot Classification: Jan. 29 – Feb.  
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Figure 20.   Honeypot Classification: Feb. 05 – Feb. 11 
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Figure 21.   Honeypot Classification: Feb. 12 – Feb. 18 
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Figure 22.   Honeypot Classification: Feb. 19 – Feb. 25 
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Figure 23.   Honeypot Classification: Feb. 26 – Mar. 04 
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Figure 24.   Honeypot Classification: Mar.05 – Mar. 11 
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Figure 25.   Honeypot Classification: Mar.12 – Mar. 18 



54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



55 

LIST OF REFERENCES 

[1] Gordon, Lawerence A, Loeb, Martin P., Lucyshyn, William, and Richardson, Robert, 
“2005 CSI/FBI Computer Crime and Security Survey,”  
http://www.cpppe.umd.edu/Bookstore/Documents/2005CSISurvey.pdf, accessed March 
2006. 
 
[2] The Honeynet Project, Know Your Enemy: Learning about Security Threats, Second 
Edition, Boston, MA: Addison-Wesley, 2004. 
 
[3] “Blackhat,” http://en.wikipedia.org/wiki/Blackhat, accessed February 2006. 
 
[4] Jordan, Christopher J., Zhang, Qiang, Royes, Jason, “Determining the Strength of 
Decoy System: A Paradox of Deception and Solicitation, Proc IEEE Workshop on 
Information Assurance, New York, West Point, pp. 138-145, June 2004. 
 
[5] Beale, Jay et al, Snort 2.1 Intrustion Detection, Second Edition, Rockland, MA: 
Syngress Publishing, 2004. 
 
[6] “Lancope’s StealthWatch,” http://www.lancope.com/products/, accessed February 
2006. 
 
[7] “Snort, the De Facto Standard for Intrusion Detection/Prevention,” 
http://www.sort.org, accessed March 2006. 
 
[8] The Honeynet Project, “Know Your Enemy: Honeynets, What a honeynet is, its 
value, and risk/issues involved,” http://www.honeynet.org/papers/honeynet/, accessed 
February 2006. 
 
[9] “The Honeynet Project,” http://www.honeynet.org, accessed February 2006. 
 
[10]  McCarty, Bill, “The Honeynet Arms Race,” IEEE Security and Privacy, 1(6), pp. 
79-82, November/December 2003. 
 
[11] “VMware User’s Manual,” http://www.vmware.com/pdf/ws5_manual.pdf, accessed 
November 2005. 
 
[12] Microsoft Windows Server 2003, “Internet Information Services,” 
http://www.microsoft.com/WindowsServer2003/iis/default.mspx, accessed November 
2005. 
 
[13] “Dissecting Snort,” http://vig.pearsonptr.com:8081/samplechapter/157870281X.pdf, 
accessed November 2005. 
 



56 

[14]  Rowe, Neil C., Duong, B. T., and Custy, John, “Fake Honeypots: A Defensive 
Tactic for Cyberspace,” draft, Computer Science Department, Naval Postgraduate 
School, March 2006. 
 
 
 

 
 



57 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, VA  
 

2. Dudley Knox Library, library@nps.edu 
Naval Postgraduate School 
Monterey, CA  
 

3. Dr. Neil Rowe, ncrowe@nps.edu 
Naval Postgraduate School 
Monterey, CA 
 

4. Mr. J.D. Fulp, jdfulp@nps.edu 
Naval Postgraduate School 
Monterey, CA 
 

5. Dr. Cynthia E. Irvine, irvine@nps.edu 
Naval Postgraduate School 
Monterey, CA 
 

6. Binh T. Duong, btduong@nps.edu 
Naval Postgraduate School 
Monterey, CA 
 

7. John Custy, custy@spawar.navy.mil 
SPAWAR 
San Diego, CA 
 


